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Parameter Bounds for Discrete-Time Hammerstein i
Models With Bounded Output Errors Uy Ty |B(q7Y) |weg s+ Y
— W =0
V. Cerone and D. Regruto A(g™1)

Abstract—n this note, we present a two-stage procedure for deriving pa- Fig- 1. Single-input-single-output (SISO) Hammerstein model.

rameters bounds in Hammerstein models when the output measurement

e”orsf E’Lre boulf‘ded' First, “S?”E ft%adyjtzte ir?p“tgo“tp‘?t data, parame- | ;s in [4] which has been extended by Hsia in [5] to deal with the case
ters of the nonlinear part are tightly bounded. Then, for a given input tran- . - . .

sient sequence we evaluate tight bounds on the unmeasurable inner signalOf Corrglated no's_e and by Baiin [8]_ Whlc_h prowd_es a _tWO stage glob-
which, together with noisy output measurements are used for bounding the ally optimal algorithm. Further noniterative solutions include the ap-

parameters of the linear dynamic block. proach based on proper extension of subspace model identification [9],
Index Terms—Bounded uncertainty, errors-in-variable, Hammerstein j[he bl_md approach proposeq in [10] and the methoq Proposed.ln (11]
model, linear programming, output errors, parameter bounding. in which a closed form solution to the problem of minimum-variance

approximation of nonlinear systems by means of Hammerstein models
is presented in the case of white noise input. Furthermore, Stoica and
I. INTRODUCTION Soderstrém [12] proposed a parametric instrumental variable method

Most physical systems are inherently nonlinear, and, though in soM{Bich. in the presence of either a strictly persistently exciting sequence
cases they can be represented by linear models over a restricted offef White noise, provides consistent estimates. Iterative methods, in-
ating range, only nonlinear representations are adequate for their gi@duced in [3], are based on the idea of alternate estimation of the pa-
scription. A wide class of nonlinear systems, also called block-ofi@meters of the linear and the nonlinear subsystems. The main problem
ented systems, can be modeled by interconnected memoryless ! iterative procedures is to prove convergence of the estimate under
linear gains and linear subsystems. Nonlinearities may enter the sys@§feral conditions. In [13], it is shown that the algorithm proposed in
in different ways: either at the input or at the output end or in the feelf] can diverge. Recently, Rangabal.in [14] have proposed a modi-
back path around a linear model. The configuration we are dealing witf@tion of the standard iterative algorithm that allows the above men-
in this note, commonly referred to as a Hammerstein model, is sholpned convergence problem to be overcome, provided that the linear
in Fig. 1; it consists of a static nonlinear pavt followed by a linear Subsystem is FIR and the input signal is white noise. Other proposed
dynamic system. The identification of such a model relies solely digrative procedures are the algorithms based on Bussgang’s theorem
input—output measurements, while the inner signai.e., the output (S€€, €.9., [15]and [16]) and the one proposed in [17]. On the nonpara-
of the nonlinear block, is not assumed to be available. metric side, most of the methods are based either on the estimation of

Identification of the Hammerstein structure has attracted the attéhonparametric kernels regression (see, e.g., [7] and [18]) or on the
tion of many authors, as can be seen in [1] and [2]. Existing idenfifoperty of the Fourier series representation (see, e.g., [6] and [19]).
fication procedures can be roughly classified on the basis of the rep!n all of the papers previously mentioned, the authors assume that
resentation (parametric or nonparametric) chosen to model the nBif measurement errgr is statistically described. However, there are
linear and the linear subsystems. As far as the estimation of the nB}any cases where in practice eitiaepriori statistical hypotheses are -
linear block is concerned, in the parametric approach the nonlinearf§/dom satisfied or the errors are better characterized in a determin-
is usually modeled by a polynomial with a finite and known order ofStic Way. Some examples are given by systematic and class errors in
more generally, with a series expansion of a known basis of nonlindggasurement equipments, and rounding and truncation errors in digital
functions (see, e.g., [3]-[5]). On the contrary, in the nonparametric €ﬂ)ewces. A Worthv_vhlle alternative to the stochastlc_ degcrlptlon of mea-
proach naa priori information on the structure of the nonlinearity isSurement errors is the bounded-errors characterization, where uncer-
assumed to be available and the mapping between the input signal &ifies are assumed to belong to a given set. In the bounding context,
the intermediate signal might not be finitely parameterizable. Thus, & Parameter vectors belonging to tfeasible parameter s¢EPS),
that case, only mild prior assumptions are made, e.g., continuity arfét Parameters consistent with the measurements, the error bounds and
piecewise smoothness [6] or membership to some very general C|ast§8fassumed mod_el structure, are feasib_le solutions of _the iden_tifica-
functions [7]. As far as the estimation of the linear block is concernd{n Problem. The interested reader can find further details on this ap-
most of the contributions use parameterized structures like autoregfé©ach in a number of survey papers (see, e.g., [20] and [21]), in the
sive with exogenous input (ARX), finite-impulse response (FIR), ook edited by Milaneset al. [22], and the special issues edited_ by
output error models while some works assume a nonparametric §&rton [23], [24]. To the best of our knowledge, only few contribu-
scription based only on the stability of the system (see, e.g., [6] aH@NS can be found which address thg identification of Hammerstein
[7]). Different methods were proposed in the literature to estimate té?dels when the measurement erperis supposed to be bounded.
parameters of the nonlinear static block and the linear dynamic part @glforte and Gay [25] considered a Hammerstein model where the
ther iteratively or simultaneously. Among the noniterative algorithm§near block is described by an ARX model. They proposed a solu-
we mention the over-parameterization method proposed by Chang 488 through the introduction of a linearized augmented Hammerstein

model (see, e.g., [4] and [8]), whose parameters are identified first using
any algorithm available in the parameter bounding literature. From

Manuscript received October 31, 2002; revised June 16, 2003. Recommentit&i Parameter bounds of such a model, overbounds on both nonlinear
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Chebichev conditional center of the FPS when the noise is bounded in

either{., or {2 norm. -
In this note, we consider the identification of SISO Hammerstein — N

models when the nonlinear block can be modeled by a linear combi-

nation of a finite and known number of nonlinear static functions, the

linear dynamic partis described by an output error model and the outpiy, 2. Steady-state behavior of the Hammerstein model wher .

measurement errors are bounded. We present a two-stage identification

procedure. First, parameters of the nonlinear block are tightly bounded

using input—output data collected from the steady-state response of@gBavior. Thus, any identification procedure cannot perceive the differ-

system to a set of step inputs with different amplitudes. Then, throu§Rce between parameteis., i } and{a~'0;, ayx }. To get a unique

a dynamic experiment, for all, belonging to a given input transient parameterization, in this work, we assume, without loss of generality,

sequencdu, }, we compute tight bounds on the inner signal whicHhat the steady-state gain of the linear part be one, that is

together with noisy output measurements are used for bounding the b

parameters of the linear part. > =0 bi ©)

= -~ =1,
D Sy

Il. PROBLEM FORMULATION In this note, we address the problem of deriving bounds on parameters

Consider the SISO discrete-time Hammerstein model depicted-irandd consistently with given measurements, error bounds and the as-
Fig. 1, where the nonlinear block maps the input signahto the un- sumed model structure. In Section Ill, using steady-state input-output
measurable inner variahie through the following nonlinear function: data, parameters of the nonlinear part are tightly bounded, while in Sec-

tion IV, for a given input transient sequence we evaluate tight bounds on

n the unmeasurable inner signal which, together with noisy output mea-

T = Z Yrtr (), t=1....N (1)  surements are used for bounding the parameters of the linear part. A
k=1 simulated example is reported in Section V.

where(y1, . ..., 1, ) is a known basis of nonlinear functions; is the
length of the input sequence. The linear dynamic part is modeled by a
discrete-time system which transformsinto the noise-free output;

I1l. A SSESSMENT OFTIGHT BOUNDS ON THE NONLINEAR
STATIC BLOCK PARAMETERS

according to the linear difference equation In most physical processes, we can collect a great deal of data, which
often contains steady-state measurements at many different operating
A(qfl)wt = B(qfl)wt (2) conditions. However, usually, only transient data are used in the iden-

tification process while steady-state measurements are not explicitly
where A(+) and B(-) are polynomials in the backward shift operatofonsidered. Although data are assumed to be generated by a persis-
e (a w = wi) tently exciting input, in practlce a given pla_nt might only be mildly
perturbed around operating conditions, leading to a shortage of proper
N o—1s 1 —na nonlinear information in the transient data. In this note, we exploit
A(qil) =1ltag 71+ o tnad , 3) steady-state operating conditions to bound the parameters of the non-
Blq™") =bo+big” 4+ bupg " (4)  linear static block. The noise corrupted output sequence is collected
from the steady-state response of the system to a set of step inputs with
In line with the work done by a number of authors, we assume thajifferent amplitudes. For each value of the step input amplitude, only
1) the linear system is asymptotically stable (see, e.g., [12], [18], apfle steady-state value of the noisy output is considered. Thus, given a
[28]-[30]); 2) Y72, b; # 0, that s, the steady-state gain is not zer@et of step inputs witth/ different amplitudes) steady-state values
(see, e.g. [28]-[30]); and 3) the ondypriori information needed is of the output are taken into account. We only assume to have a rough
an estimate of the process settling-time (see, e.g., [31])yLbe the jdea of the settling time of the system under consideration, in order
noise-corrupted output to know when steady-state conditions are reached, so that steady-state
data can be collected. Indeed, under conditions 1), 2), and 3) stated
Yt = wr + Nt (5) in Section Il, combining (1), (2), (5), and (9) at steady-state, we get
the following input—output description involving only the parameters
Measurements uncertainty is known to range within given bongs ~ of the nonlinear block:
ie.,

go = > wtr(@)ge,  s=1,..., M (10)
[n:] < Ane. (6) =1

Unknown parameter vectors€ R™ and¢ € R are defined, respec- Whereis, 7, andi, are steady-state values of the known input signal,

tively, as output observation and measurement error respectidély: » is the
number of the steady-state samples. A block diagram description of
T (10) is depicted in Fig. 2. The feasible parameter region of the static
vo=n e ] (") honlinear block is defined as

67 =lar ... dna bo b1 ...bns] (8)

wheren, + ny + 1 = p. Itis easy to show that the parameterization of = {7 €R":y. = Z Wk (ts) + 75,

the structure of Fig. 1 is not unique. As a matter of fact, any parameters =t

Setb]’:a/_]bj,jz1,2,...,711), andy, = ay, k=12, ..., n, |’_I<|<A7_ls- s=1.....M } (11)
for some nonzero and finite constantprovides the same input—output T ' S
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where{A7. } is the sequence of bounds on measurements uncertainty. (5$t e
From _deflnltlon (1_1) |t_ can be seen t_hat, is exactly descnbgd by the x§+ + x| B q—l) Wy A+ Y
following constraints in the.-dimensional parameter space:

Py < Po+ AT Fov 2 0. — AT (12)

Fig. 3. Errors-in-variables setup for bounding the parameters of the linear

where system.

_ _ / _ ' — — T
Os = [U1 (s Do (U b3(ts) ... ¥n(Us 13 . e . .
v [r(@.) olil) Ya(@.) o)) (13) We can now formulate the identification of the linear model in terms

for s = 1,2,..., M. This exact description 6P, will be used in ©f the noisy output sequendg. } and the uncertain inner sequence

the next section when deriving tight bounds on the unmeasurable infigr} @s shown in Fig. 3. Such a formulation is commonly referred to

signal ;. as an errors-in-variables (EIV) problem, i.e., a parameter estimation
SinceD,, is a convex polytope, whose shape may become quite corfoblem in a linear-in-parameter model where the output and some or

plex for increasing: and M, an outer bound to it such as an ellipsoicfll the explanatory variables are uncertain.

or a box is often computed. In this note, we consider an orthotope-outeAS @ matter of fact, combining (2)—(5) and (19), we get

bounding set3, containingD-,

na nb
n c . yr = — Y (y1—i — ne—i)ai + i ;46w ) by + e (21)
By ={y €R" : v =7 + 67,167 < A, ji=1....n} ; ;( = )b

(14)
where The definition of the feasible parameter region for the linear system is
IS e e N o/ e | sy Dr={0en”: Ala Dlye = ndd = Blg 1) [2f + da];
Y o2 ’ _ 2 g=1;|ne| < Angs |b2e| < Az, t=1,...,N} (22)
;}111) _ Jlel’iglw v A)/;nd-“ — ,?‘/El%): Yj- (16)

whereg = 1 takes account of condition (9) on the steady-state gain.

The set, as defined in (14) is a tight orthotope outer-bound on thgOM _(21) it can be seen that consecutive regression; are related deter-
exact feasible parameter regifhy and its evaluation requires the so-Ministically by uncertain output samples and uncertain input samples;
lution of 2n linear programming (LP) problems with variables and that occurrence qualifies the problem as a dynqmlc EIV. Itis rfefer.red to
2M constraints. The significance of central estimatésand param- aS 2 static EIV p_roblem when the uncertaln_vanables appearing in suc-
eter uncertainty bounds~,, j = 1,2, ..., n, which in turn define3, ~ CESSIVe regressions are supposed to vary independently. The relations

through (14), will be shown in the numerical simulation introduced iR&tWeen successive regressions in the dynamic EIV case give rise to
Section V. possibly nonlinear exact parameter bounds, which could be not easily

and exactly computed [32]. On the other end, in the static EIV case
exact parameter bounds are piecewise linear and, although generally
non convex, the feasible parameter region is the union of at afost

In the second stage of our procedure, we evaluate bounds on ¢b@vex sets: each being the intersection of the FPS with a single or-
parameters of the linear dynamic block. Given the exact descriptiontafint of thep-dimensional parameter space (a detailed discussion on
the feasible parameter sBt,, tight bounds on the inner unmeasurablehe geometrical and topological structure of the feasible parameter re-
signalz: can be computed for all inputs: belonging to a transient gion for static EIV problems can be found in [33]). Thus, as shown in

IV. BOUNDING THE PARAMETERS OF THELINEAR DYNAMIC MODEL

sequencd, }, through the following expressions [32], the FPS of static EIV can be more conveniently handled than the
i R . T . FPS of dynamic EIV. That motivates the use, in this note, of results
TS i pry = Wax o0, t=1,2,....N (17)  from the static EIV [33]; since in model (21) the uncertain variables

appearing in successive regressions are deterministically related, only

where; = [t (ur) ¥o(ur) ¥s(us) ... ¢¥n(us)]T. Computation of outer approximations of the exact feasible parameter region will be ob-
bounds in (17) requires the solution 2l LP problems with: vari- tained. Thus, in this work, a polytopic outer approximatidf of the
ables an@ M constraints. exact FPDy, i.e. Dy D Dy, will be presented, together with an or-

Remark: A similar approach is taken by Belforte and Gay [25] whdhotope-outer bounding sé&; of Dj, which provides parameter un-
propose the computation of bounds:anin order to refine the evalua- certainties intervals. When we apply results from [33] to our problem
tion of parameter uncertainty intervals of the linear system. Howevave get the following description of the feasible paramete5eat the
the bounds they compute are not guaranteed to be tight since their estilgle timet
uation is based on outer approximations of the nonlinear block param-

. A NT . ) . ) T i A
eter set. On the contrary, (17) of this work provides tight bounds on (0t = A0e) 0 Sye+ Ane (G +Ade) 6 2 ye — Ane (23)

™" andz™** since they are computed on the basi®gfwhich is an L ... 1. -1 -1 ... —-1]86=-1 (24)
exact description of the nonlinear block parameter region.
If we define the following quantities: where
. mltﬂin + mvtnax A }rlt‘l‘la.\' _ }rltTll'l] 18 (f);‘r = [—'yt71 cer = Yt—na l'f ;1,’?_1 e I’f—nh] (25)
= - A = —48M8 o
" 2 "t 2 (18) Aot = [An_isgn(ar) ... A nasgn(ana) Azsgn(bo)

a compact description of, in terms of its central value; and its Azisgn(by) ... Awi—pnpsgn(bnp)]. (26)

oz, i : . . .
perturbationbz s as follows Equation (24) takes account of condition (9) on the steady-state gain.

2 =25 + S (19) The orthotope-outer bounding 81 is defined as
[62¢] < Ay (20) By ={0ER":0; =65+060;,|00;| <Ab;,j=1,....p} (27)
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where TABLE |
RELATIVE ERROR—NONLINEAR BLOCK PARAMETER CENTRAL ESTIMATES

gmin 4 grmax gmax _ gmin (7¢) AND PARAMETER UNCERTAINTY BOUNDS (Ary; ) AGAINST VARYING
b)c — J A = J J 28 J J T
iITT o ST T (28)  MEASUREMENTSUNCERTAINTY (Ae¥) AND SIGNAL-TO-NOISE RATIO (SNR)
g = min §; 7 = maxf;. 29
P = im0 6] = max (29)

Ae¥ SNR ; True V5 Ax;

Parameter vectors® and#° are Chebishev centers in tlig, norm (%) (dB) Value

of D, andDj respectively and are commonly referred to as central
estimates. The computational aspects related to the evaluation of the
orthotope-outer bounding sB} are briefly discussed in the following

0.1 614 v 1.000 1.000 7.1e-4

subsection. v 1.000 1.000 7.8e-4
Computation of3y: In principle, the computation of;"" and v3  1.000 0.999 8.7e-4
6%, j = 1,...,p, which defineBy, requires the solution dfp2? 1 438 v 1.000 0997 7.4e-3
LP problems (the coefficie®p accounts fop minimization problems v 1.000 1.001 6.6e-3
andp maximization problems whilg” is the number of orthant in the v3  1.000 1.000 6.3e-3
p-dimensional parametgr space in WE’IICh the ab@p/e)ptlr.nlza'tlop 5 381 7 1000 1019 3.4e2
problems must_ be carried out_) withV + p —|— 1 _constralnts IN ve 1000 0983 6.0e-2
constraints derive from (23) with = 1,..., N; p is the number of
constraints defining the orthant in the parameter space; last, there is an 75 1000 0987 d4.9e-2
equality constraint derived from the steady-state gain normalization 10 257 m 1000 1.059 I.le-l
condition (9)). In practice, however, the computational load can be v2 1.000 0.950 1.3e-1
significantly reduced if the signs df;, j = 1,...,p are a-priori v3 1.000 0.919 1.2e-1
known. Indeed, in that case the number of LP problems dramatically 20 176 v 1.000 0.997 1.0e-1
decreases t@p. If not available, information about the signs of 4o 1.000 0994 1.le-1

#; can be achieved through a point estimate (using least squares vs 1000 0961 1.3e-1
estimates, for example) which will indicate the orthant where the
optimization should be carried out. If the obtainBd is such that
some ofg™® (#**) are zero, then the optimization problems should
be also solved in the orthants characterized oy 0 (4; > 0). TABLE I

As to the computational complexity of methods for solving LP ABSOLUTE EPRROR_NONG'NEAR BLOCKBPARAMETAET C'i‘”RAL ES%ES
problems, it is well known that the ellipsoidal algorithm proposed by (77) AND PARAMETER UNCERTAINTY BOUNDS (A7, ) AGAINST ( )
Khachiyan [34] seems not to perform satisfactorily, although it shows
a worst case polynomial complexity. On the contrary, the simplex

method which is widely used in practice and for which Klee and SNR v Tre g Ay;
Minty [35] constructed pathological examples that clearly prove its (dB) Value
worst case exponential complexity, performs quite walthe average
(see, e.g., [36]). Consequently, the lack of a polynomial bound on the 589 4 1.000 1.001 5.1e-3
simplex method is more of theoretical interest than of practical one. v, 1.000 0998 2.1e-3
v3 1.000 1.000 2.3e-3
V. SIMULATED EXAMPLE 493 v 1.000 1.016 2.7e2
In this section, we illustrate the proposed parameter bounding proce- y2  1.000 0.996 5.7e-3
dure through a numerical example. The system considered here is char- v3  1.000 0.996 9.8e-3
acterized by (1), (2), and G) with, = 1,72 = 1,73 = 1, ¢ (us) = 424 ~ 1000 0964 1.0e-1
we; U2 (ue) = i Ps(ue) = ui; A(g™!) = (1 - L1g7 1 +0.28¢7%) vo  1.000 1.008 2.le-2
andB(¢™") = (0.1¢™" + 0.08¢™%). Thus, the true parameter vec- v 1000 1.007 3.5e-2

tors arey = [y1 v 1|t = [111]" andd = [a1 a2 b bo]" =
[-1.10.28 0.1 0.08]T. Two different structures of measurement errors

3.7 v 1.000 1.085 1.7e-1

are considered: relative and absolute error. From the simulated tran- 72 1.000 1003 7.1e-2
sient sequencéw,, 7, } and steady-state dafav., 7. }, the SNR and vs 1000 0979 7.3e-2
SNR are evaluated, respectively, through 197 vy 1000 1344 5.2e-1
N " v2  1.000 0.899 1.7e-1
N 2 M 92
SNR = 10log { Z:LN—lL:;} ,SNR = 10log {%} . (30) vz 1.000 0945 2.le-1
t=1 "It s=1 'Is

were supposed to have the same value,AeY, = A&’ 2 A¢Y. Five
different values of uncertainty bounds were consideted: = 0.1%,
First, bounded relative output errors have been considered when sit¥, 5%, 10%, 20%. For a giveA¢?, the length of steady-state and

ulating the collection of both steady state and transient data. More pilee transient data ar®/ = 10 and N = [100, 1000] respectively.
cisely, we assumed: = /y:, |€/| < A€f, 7. = €7, 64| < The steady-state input sequer@e } belongs to the intervdl-2, +2],
AeY; where{e/} and {€?} are random sequences belonging to thenhile the transient input sequen¢e.} belongs to the uniform dis-
uniform distributions [— A€, +Ae!] andU[—Ag€Y, +A&Y] respec- tribution U[—2, 4-2]. Results about the nonlinear and the linear block
tively. Bounds on steady-state and transient output measurement erasesreported in Tables I, Ill, and V, respectively. For low noise level

A. Relative Errors
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TABLE 1lI TABLE V
RELATIVE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (6¢) RELATIVE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (6¢)
AND PARAMETER UNCERTAINTY BOUNDS (A#;) AGAINST VARYING AND PARAMETER UNCERTAINTY BOUNDS (A#f;) AGAINST VARYING
MEASUREMENTSUNCERTAINTY (Ae¥) AND SNR WHEN IV = 100 MEASUREMENTSUNCERTAINTY (Ae?) AND SNR WHEN N = 1000
AeY SNR §; True o5 Ab; AeY SNR 6; True 05 Af;
(%) (dB) Value (%) (dB) Value
01 648 6, -1.100 -1.100 1.7e-3 01 649 6; -1.100 -1.100 3.3e-4
6, 0280 0.280 1.6e-3 6, 0280 0280 3.3e4
63 0.100 0.100 1.3e-4 6; 0.100 0.100 6.8e-5
6, 0080 0.080 1.6e-4 64 0080 0.080 6.7e-5
1 446 6, -1.100 -1.103 1.7e-2 1 449 6, -1.100 -1.099 3.5e-3
6, 0280 0282 1.5e-2 6, 0280 0279 3.2e-3
63 0.100 0.100 1.3e-3 f; 0100 0.100 4.9e-4
64 0.080 0.079 3.0e-3 64 0080 0.080 8.7e-4
5 313 6; -1.100 -1.095 6.6e-2 5 31.0 6; -1.100 -1.103 1.9e-2
6, 0280 0275 5.6e-2 6, 0280 0282 1.8e-2
63 0.100 0.099 8.4e-3 6; 0.100 0.101 5.0e-3
64 0080 0.080 1.3e-2 6, 0.080 0.081 5.1e-3
10 247 6, -1.100 -1.135 1.2e-1 10 248 6, -1.100 -1.123 4.4e-2
62 0280 0315 Il.le-l 62 0280 0302 4.8e2
63 0.100 0.106 1.6e-2 6; 0.100 0.107 1.0e-2
64 0.080 0.083 2.le-2 6, 0080 0.081 1.1le-2
20 188 6, -1.100 -1.181 3.7e-1 20 188 6, -1.100 -1.103 7.6e-2
62, 0280 0370 3.2e-1 6, 0280 0284 7.6e-2
6; 0.100 0.101 2.6e-2 63 0100 0.105 1.2e-2
64 0.080 0.079 5.2e-2 64 0.080 0.081 1.4e-2
TABLE IV TABLE VI
ABSOLUTE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (6%) ABSOLUTE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (65)
AND PARAMETER UNCERTAINTY BOUNDS (Af;) AGAINST SNR AND PARAMETER UNCERTAINTY BOUNDS (A#;) AGAINST SNR
WHEN N = 100 WHEN N = 1000
SNR 6;  True 65 Af; SNR 6;  True 65 Af;
(dB) Value (dB) Value
600 6, -1.100 -1.100 4.2e-3 599 6, -1.100 -1.100 2.le-3
62 0280 0.280 3.6e-3 62 0280 0.280 2.0e-3
63 0.100 0.100 4.2e-4 63 0100 0.100 2.5e-4
64 0.080 0.080 5.8e-4 64 0.080 0.080 3.4e-4
478 6, -1.100 -1.099 1.5e-2 500 6; -1.100 -1.101 7.0e-3
6, 0280 0.278 1.4e-2 6, 0280 0.281 6.5e-3
6; 0.100 0.101 1.7e-3 6; 0.100 0.100 7.7e-4
6, 0.080 0.080 2.2e-3 64 0.080 0.080 1.2e-3
36.1 6, -1.100 -1.095 5.5e-2 399 6, -1.100 -1.094 2.5e-2
62 0280 0.278 S.le-2 6, 0280 0.276 2.6e-2
63 0.100 0.100 4.8e-3 63 0.100 0.100 3.2e-3
65 0.080 0.081 5.5e-3 64 0.080 0.080 4.7e-3
248 6, -1.100 -1.096 1.le-1 297 6, -1.100 -1.096 7.2e-2
6, 0280 0281 1l.le-l 62 0280 0.274 6.4e-2
63 0.100 0.103 8.7¢-3 63 0.100 0.099 4.8e-3
64 0.080 0.084 1.8e-2 054 0.080 0.081 1.3e-2
138 6, -1.100 -1.366 4.5e-1 202 6, -1.100 -1.195 3.2e-1
2 0280 0.526 4.5e-1 62 0280 0.358 2.8e-1
63 0.100 0.092 5.5e-2 63 0.100 0.105 2.1e-2
64 0.080 0.067 6.6e-2 6s 0.080 0.069 4.9e-2

(Ae¢” = 0.1%) and for all V, the central estimates of both the nonrameters. For higher noise levehe? > 1%), both~° andé° give
linear static block and the linear model are consistent with the true Eatisfactory estimates of the true parameters. As the number of obser-



1860 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 10, OCTOBER 2003

vations increases (fro¥V = 100 to N = 1000), parameter uncer-  [9] M. Verhaegen and D. Westwick, “Identifying MIMO Hammerstein sys-

tainty boundsA~; andA#; decreases unsurprisingly. tems in the context of subspace model identification methdds,’J.

’ ’ Control, vol. 63, no. 2, pp. 331-349, 1996.

[10] E. Bai and M. Fu, “A blind approach to Hammerstein model identifi-
cation,” IEEE Trans. Signal Processingol. 50, pp. 1610-1619, July

Next, bounded absolute output errors have been considered when = 2002.

simulating the collection of both steady state dafa.. 7.}, and [11] M. Korenberg, “Recent advances in the identification of nonlinear
oo Ys i systems: Minimum-variance approximation by Hammerstein models,”

B. Absolute Errors

transient sequencéu., y. }. Here, we assumefl;| < A, and Proc. Int. Conf. IEEE Med. Biol. Eng. Sgcvol. 13, no. 5, pp.
|7:] < Af, wheren; and,, are random sequences belonging to 2258-2259, 1991.
the uniform distributionsU[—Amn;, +An,] and U[—A#q,, +A7,] [12] P. Stoica and T. Soderstrom, “Instrumental-variable methods for iden-

respectively. Bounds on steady-state and transient output measurement {ification of Hammerstein systemslit. J. Contro} vol. 35, no. 3, pp.

. A 459-476, 1982.
errors were supposed to have the same valueAs.= A7 = A, [13] P. Stoica, “On the convergence of an iterative algorithm used for
and were chosen in such a way as to simulate five different values of = Hammerstein system identificatiodEEE Trans. Automat. Contwol.
signal to noise ratio at the output, namely 60, 50, 40, 30, and 20 dB.  AC-26, pp. 967-969, Apr. 1981.
For a givenAy, the length of steady-state and the transient data arét4] S- Rangan, G. Wolodkin, and K. Poolla, “New results for Hammerstein

M = 10 andN = [100,1000], respectively. The steady-state input Z%Stggfjfgztmcat'on' itProc. 34th IEEE Conf. Decision Conydi995,

sequencei, } belongs to the intervdl-2, 42|, while the transient  [15] |. Hunter and M. Korenberg, “The identification of nonlinear biological
input sequencéu, } belongs to the uniform distributiofi [—2, +2]. systems: Wiener and Hammerstein cascade modgilsl,’Cybern, vol.
Results about the nonlinear and the linear block are reported in 55 pp. 135-144, 1986. S _ o
Tables I, IV, and VI, respectively. For low noise level (SNR60 dB) [16] M. Korenberg and I. Hunter, “The identification of nonlinear biological

. . . systems: LNL cascade modelBiol. Cybern, vol. 55, pp. 135-144,
and for all NV, the central estimates of both the nonlinear static block 1{,86_ & ¥ PP

and the linear model are consistent with the true parameters. FQ17] V. Kaminskas, “Parameter estimation of discrete systems of the Ham-

higher noise leve{SNR < 40 dB), both~“ andé give satisfactory merstein class Automat. Remote Contralol. 36, no. 7, pp. 1107-1113,
estimates of the true parameters. As the number of observations_ 1975
. f N o— 150 to N = 1000 t taint T?S] A. Krzyak, “Identification of nonlinear block-oriented systems by the
increases (fromV. = 0N = ), parameter uncertainty recursive kernel estimatelht. J. Franklin Inst, vol. 330, no. 3, pp.
boundsA~; andA§; decreases, as expected. 605-627, 1993.
[19] —, “On nonparametric estimation of nonlinear dynamic systems by
VI. CONCLUSION ahge%Fourier series estimateSignal Processingvol. 52, pp. 299-321,

A two-stage parameter bounding procedure for SISO Hammersteil20] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic
models for systems with bounded output errors has been outlined. First, ~ SiStems with set membership uncertainty: An overviefuftomatica

. . . vol. 27, no. 6, pp. 997-1009, 1991.
using steady-state input-output data, parameters of the nonlinear blogks; g waiter and H. Piet-Lahanier, “Estimation of parameter bounds from

which was assumed to be modeled by a linear combination of a fi- = bounded-error data: A surveyMath. Comput. Simul.vol. 32, pp.
nite and known number of nonlinear static functions, have been tightly ~ 449-468, 1990. _ _ _
bounded. Then, for a given input transient sequence we have comput&#] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, E8synding

- . - . Approaches to System IdentificationNew York: Plenum, 1996.
bounds on the unmeasurable inner signal which, together with outp 32 “Special issue on bounded-error estimatiomt. J. Adapt. Control

noisy measurements have been used to overbound the parameters o Signal Processingvol. 8, no. 1, 1994.
the linear part. The numerical example showed the effectiveness of tHie4] “Special issue on bounded-error estimatiomt. J. Adapt. Control
proposed procedure_ Signal Processingvol. 9, no. 1, 1995: ) o )
[25] G. Belforte and P. Gay, “Hammerstein model identification with set
membership errors,” ifProc. IEEE Conf. Decision Contrpll999, pp.
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